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Three-dimensional viscous wakes 
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(Received 2 November 1961 and in revised form 1 March 1962) 

The velocity fields of three-dimensional viscous wakes are examined with the 
useof the boundary-layer approximations, Oseen’s linearization of the convective 
terms, and the assumption of constant fluid properties. Transform methods 
yield solutions for general types of initial conditions. As an illustration, the 
axial velocity distribution of a wake whose initial isovels (lines of constant velo- 
city) are of elliptic shape and their decay to axial symmetry are demonstrated. 
Both laminar and turbulent flows are considered. 

1. Introduction 
The aim here is to make an initial assessment of some three-dimensional effects 

in viscous free mixing of wake-like or jet-like flows. Our considerations are limited 
to flows in which the Prandtl boundary-layer approximations may be made. 
As a result the cross-flow velocities v, w are assumed small with respect to the 
axial velocity u, and the cross-wise pressure variations are assumed to have a 
negligible influence on the axial momentum balance. In  fact, streamwise pressure 
gradients are completely neglected in the axial momentum equation in a first 
approximation. Clearly this approach may be formalized by means of appro- 
priately constructed series expansions in terms of a small parameter which is a 
function of the characteristic Reynolds number. Higher approximations may be 
obtained thereby. However, in this paper the formalism and higher approxi- 
mations are not considered. Rather the equations, simplified to the first order, 
are obtained by familiar order of magnitude reasoning of the boundary-layer 
type. A related discussion is given by Bloom (1961). 

To achieve additional simplicity, flows are considered wherein decrements 
or increments with respect to a uniform inviscid velocity u, are sufficiently small 
to permit the linearization of the convective terms in the equations of motion. 
This linearization is in the familiar spirit of Oseen and others. Jets in stationary 
ambients are excluded here although analogous procedures may be applied 
to them as well. Finally, steady flow and constancy of fluid properties are 
postulated. 

From a mathematical standpoint, the governing equations exhibit ‘ quasi- 
elliptic ’ behaviour in the cross-planes and ‘parabolic ’ behaviour axially. That is, 
one real characteristic exists, whereas two are imaginary. The linearized equa- 
tion governing the axial velocity is seen to be uncoupled from those governing the 
cross-flow components. On the other hand, the two cross-flow momentum equa- 
tions, in which the cross-wise pressure gradients are retained are formed into two 
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equations of Poisson type. Transform methods can be used to produce solutions 
of the governing equations for general types of initial conditions. Both laminar 
and turbulent flows are considered. 

2. Analysis 
The following equations are assumed to apply 

continuity: vu+wz = i i x ;  ( 1 )  

pUe;El, = ~ V 2 , u ;  P = P(Y, 21, ( 2 )  

momentum (linearized boundary -layer equations) : 

FIGVRE 1. Schematic diagram of axial flow field. Typical isovels are shown on the left and 
velocity defect profiles (u, - u) on the right. 

wherep denotes density,ppressure, p the coefficient ofviscosity, ii the axialvelocity 
defect (ue - u),  V2, = aZ/ay2+ a2/az2, subscripts x, y, x denote partial differentiation 
with respect to the indicated variable, subscript e denotes the conditions at  the 
edge of the viscous layer, and the co-ordinates and velocity components are 
defined in figure 1. Equations (1) to (4) govern either laminar or turbulent flows. 
However, for the latter p is interpreted to be the turbulent eddy viscosity which 
is assumed to be at  most a function of x. 

The solution for the velocity components is f i s t  developed in general terms 
and then applied to a particular problem, a wake whose axial velocity isovels 
(lines of constant velocity) are of elliptic shape. The distribution of axial velocity 
is considered first. 
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Axial velocity 

Equation (2) is recast as follows 

4 s  = 41/11 + 4Lru (5) 

with 

and # = (ue-U)/(ue-u~J~ 15b) 

where j = 0 for laminar flows, j = 1 for turbulent flows, L defines a constant 
characteristic length, ,ut is the eddy coefficient of viscosity, and subscripts c and 
0 denote conditions at an initial station and conditions along the s axis, respec- 
tively. Equation (5) indicates that in terms of the transformed variables the 
analysis for laminar and turbulent flows are identical. 

The appropriate boundary conditions are 

and 
Use of double Fourier Transforms yields the following solution of (5) 

In the special case where it can be assumed that q5c is separable, that is 

4 c  = 4 2 , ( 4 1  

equation ( 7 )  can be rewritten as follows 
(9) 

z , (a)  e-a2s-ia1/d7 Z,(b) e--b's--ibUdg (10) 

where &(a) and Z,(b) are the usual one-dimensional transforms of the functions 
41c(v), and 42c(g), respectively. 

Cross-$ow velocities 

The governing equations for the cross-flow velocities are 

continuity: vy + wB = (u, - uOe) 4z; (11) 

(12) 

(13) 

1 

P 
1 

P 

momentum: u,v, = --pv+vV2,v, 

u,w, = - -pe + vv2, w, 

where 4, is assumed to be known from prior analysis. Differentiation of (12) 
and (13) with respect to z and y ,  respectively, yields the vorticity equation 

Qs = Q,,+ Qu,, (14) 
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where 51 = v, - wg. The vorticity equation is identical in form to ( 5 )  and is sub- 
ject to the same form of boundary conditions (6). Thus, the solution is 

T(m,n)exp{- (m2+n2)s-i(mq+ncr)}dmdn, (15) 

and SZ = QC(q, cr) at s = 0. Since 51 and 4 are now determined, the components 
v and w are obtained from the following relations, 

and are amenable to solution by classical techniques. 

Example : elliptic wake 

(a)  Laminar Aow ( j  = 0). At an initial station (s = 0), let 

where E is a pure constant, which lies in the range 0 < E 6 1, and defines the 
eccentricity of the isovels. Subscripts e ,  c and 0 denote free stream conditions, 
conditions at an initial station, and conditions a t  the s axis, respectively. 

The characteristic length L is, in general, defined by the initial conditions. 
That is, by using a familiar definition of a viscous layer thickness, namely at 
z = 0,  y = S,, when u = ug = O-99ue, it  is readily seen that 

where S, is the initial semi-major axis of an isovel of velocity u8. With (19), the 
relation between the physical and transformed axial co-ordinate becomes 

The physical length x is of the order of a free-stream Reynolds number based 
on the initial viscous layer thickness of the semi-major axis and, therefore, may 
be very large. 

The distribution of the axial velocity defect for s > 0 is derived by the previous 
analysis and can be shown to be 

where k2 = [1+ 4s]-l, E2 = [e2 + 481 [1+ 4s]-l, and $o is the distribution of $ 
along the axis and is given by 

E 

" = [ 1 + 4.~14 [c2 + 4~14. 

Equation (21) clearly satisfies the required boundary conditions. 
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Two important features of the solution are discussed below. The first concerns 
the various types of modes of decay, while the second deals with the effect of the 
three-dimensionality on the rate of decay of the velocity defect. 

For example, when E < 1, that is, when the initial eccentricity of the wake 
shape is large, equation (22) acquires both two-dimensional and axisymmetric 
character as s goes from zero t o  infinity. That is, there exists a region wherein 
4s is much greater than €2 and much less than unity; therefore, (22) reduces to 
40 = e / 2 d  which corresponds to a two-dimensional mode of decay. Also, there 
exists a region wherein 4s 9 1, which implies 4s 9 € 2 ,  and the mode of decay 
( $ o = ~ / 4 s )  is that of an axially symmetric type. On the other hand, when 
4s 9 1, which implies 4 s 9  e2, the magnitude of E does not enter the discussion 
and equation (21) reduces to 

which has the well-known axisymmetric character. 
Equation (23 )  indicates that a wake with any degree of initial eccentricity ulti- 

mately degenerates to an axisymmetric configuration and mode of decay. Clearly, 
it should be of interest to determine the distance required for the ellipticity 
to decay to a specified arbitrary value. The viscous layer thicknesses at  the 
principal axes are 

and 

where 8, and 8, denote the viscous layer thicknesses of the semi-major and semi- 
minor axes, respectively. With equations (24) it is seen that the ratio of the 
semi-major to the semi-minor viscous layer thicknesses is 

and since the eccentricity ( e )  is defined by 

it follows that 
where e, = J( 1 - € 2 ) .  

The question now arises as to the effect of the three-dimensionality on the 
rate of decay of the velocity defect. A pertinent parameter for comparison is the 
velocity defect along the axis. If subscripts a and b respectively denote two 
wakes with different eccentricity, then from (22) it  follows that 

It is only meaningful to compare two wakes with equal drag. Therefore, (28) must 
be supplemented by the condition 

ec, = OCb' (29) 
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where 8 is the momentum thickness and is defined by 

Martin H .  Steiger and Martin H .  Bloom 

With (5a), (18) and (19), condition (29) reduces to 
Lv  ue-uoc Lv ue--oc 
[ G E T ] ,  = [ < ‘ Y ] b ’  

or 

In  order to present some representative results, a special case is considered 
wherein the flight conditions and the initial velocity at  the axis (uoc) are 
identical in both wakes. In  addition, comparison is made with respect to an 
axially-symmetric configuration and, therefore, without loss in generality 
eb can be set equal to unity. With these assumptions (31a) becomes (LE), = L b  

where p = 4(x - x,)/L,. Investigation of (32) shows that at any station for x > x,  
the right-hand side is always less than unity. Therefore, it can be concluded that 
if two wakes have identical flight conditions, identical initial velocity at  the axis, 
and identical drag [i.e. va = vb, uea = u9, (uOc), = (U& and (S~E), = ( S ? c ~ ) b ] ,  the 
wake with the largest initial eccentricity (e, = (1 - will decay most rapidly. 

( b )  Turbulent flow. For fully turbulent wakes, in which one assumes that the 
eddy viscosity varies only with the streamwise distance, the previous solutions 
and results still apply. However, the relation between the physical and trans- 
formed axial co-ordinates must be modified to include the eddy coefficient of 
viscosity. To obtain a qualitative estimate of the change in the streamwise scale 
due to turbulence, a relation of the following form may be assumed for the eddy 
coefficient of viscosity : 

where K is a pure constant of the order of 10W and 8 is assumed to be the average 
viscouslayer thickness (28 = S1+6,). With (5a),  (19), (24) and (33) the relation 
between the physical length x and the transformed axial variable s becomes 

Pt = KP(28) (u, - uo), (33) 

It is of interest to note that (34) is independent of Reynolds number. 

3. Second approximations to the linearized solutions 
This section presents two techniques that may be used to improve the analysis; 

namely, the modified Oseen approximation as suggested by Lewis & Carrier? 
(1949), and a method wherein the profiles generated by the linear equation are 

t The authors wish to thank G. F. Carrier for his useful discussion concerning this 
approximation. 
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given an additional degree of freedom in the nature of an undetermined arbitrary 
function. The arbitrary function is required to satisfy an appropriate condition, 
such as an integral relation or the axial momentum equation evaluated at the 
axis. 

The modified Oseen approximation involves a corrective stretching of the 
axial co-ordinate. To this end the inertial term in equation ( 2 )  is replaced by 
u*aE/ax, where u* = cue and c is a constant with values in the range 0 < c < 1.0. 
Clearly the solution for the elliptic wake is the same as that given in (21) with s 
replaced by 6,  where 6 = s/c. That is, 

( u e - - ) / ( u e - - O c )  = 6oexp {-E2[r2+ (c/B)~I), (35)  

where $o = E [ (  1 + 45) ( E ~  + 45)]-*, L2 = [l + 4&l, and B 2  = [e2 + 451 [1+ 461-l. 
The constant c may be evaluated in several alternative ways. For example, it 
may be required that the mean of the neglected inertia terms along the s axis 
must vanish. This is expressed by 

from which it follows that c = (ue+ uOc)/2ue. Also, it may be appropriate to weigh 
the difference by ;El. This is expressed by 

from which we derive c = (ue+ 2uoc)/3ue. The two derived magnitudes of c are 
close to each other. 

As an alternative to co-ordinate stretching, one may pose a correction to the 
linearized solution in the form 

where q51(s) is an unknown correction function and subscript 2 denotes the 
second approximation. Several alternative conditions may be used to evaluate 
this function. Among the possible relations which would be meaningful are 
the momentum integral equation and the non-linear differential axial momentum 
equation evaluated at the axis. These equations are respectively? 

and uouoz = Vb,,, + %zo). (39b) 

It is seen that the momentum defect integral is invariant in the general three- 
dimensional, steady isobaric case. This can also be shown to be valid for com- 
pressible flows. 

Only the satisfaction of the integral equation above is shown here because it 
can be carried out in closed form. The equation along the axis is more cumber- 

t The following boundary-layer equations are assumed to apply 
continuity: ux+vv+w, = 0, 
momentum: (ua),+(uv),+ (uw), = ~[u~~+u,,1; p = p ( y ,  2) .  
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some to handle, although it is straightforward in principle. Furthermore, it  is 
possible to satisfy both conditions simultaneously (and indeed others) if addi- 
tional arbitrary functions are incorporated into the linearized solution. In  essence 
these procedures resemble those of more conventional integral methods, the 
linearized equation being used to generate first approximation profiles. Equa- 
tions (38) and (39 a )  yield 

(40) 
where, without loss in generality, r$lc has been taken equal to zero. 

solution and by equation (40). 
Table 1 compares the velocity distribution along the axis given by the linearized 

Second-approximation ($o + 
r- - Linearized _- 

($0) u0, = 0 . 4 ~ ~  uoc = 0 . 6 ~ ~  uoc = 0*8ue 

1.0 1.000 1.000 1.000 
0.8 0.712 0.754 0-780 
0.5 0-397 0.437 0.472 
0- 1 0.0717 0.0815 0.091 1 
0 0 0 0 

TABLE 1. 
ue 

Ue - UO $o = E [ (  1 + 4s) (E' + 4~)]-* and $0 +$I = - (1 - (1 - [ I -  (u~~/u:)] $0)'). 

The results of the modified Oseen approximation agree reasonably with the 

It is of interest to note that the above corrections do not alter the essential 
results presented in Table 1. 

features given by the linearized solution. 
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